Green tea compound may be a therapy for people with rheumatoid arthritis

Contact: Katie Gazella
kgazella@umich.edu
734-764-2220
University of Michigan Health System

Anti-inflammatory compound inhibits production of molecules that cause destruction of cartilage, bone

ANN ARBOR, Mich. — A new study from the University of Michigan Health System suggests that a compound in green tea may provide therapeutic benefits to people with rheumatoid arthritis.

The study, presented April 29 at the Experimental Biology 2007 in Washington, D.C., looks at a potent anti-inflammatory compound derived from green tea. Researchers found that the compound — called epigallocatechin-3-gallate (EGCG) — inhibited the production of several molecules in the immune system that contribute to inflammation and joint damage in people with rheumatoid arthritis.

The compound from green tea also was found to suppress the inflammatory products in the connective tissue of people with rheumatoid arthritis.

“Our research is a very promising step in the search for therapies for the joint destruction experienced by people who have rheumatoid arthritis,” says Salah-uddin Ahmed, Ph.D., lead researcher on the study. Ahmed, a research investigator with the Division of Rheumatology at the U-M Health System, was selected to present the research at the Experimental Biology meeting as the recipient of the Young Scientist Travel Award, given by the American Society for Pharmacology and Experimental Therapeutics. This study was also selected by the American Society for Nutrition to be featured in a press release.

To conduct the research, the scientists isolated cells called synovial fibroblasts from the joints of patients with rheumatoid arthritis. These fibroblasts — cells that form a lining of the tissue surrounding the capsule of the joints — then were cultured in a growth medium and incubated with the green tea compound.

The fibroblasts were then stimulated with pro-inflammatory cytokine IL-1ƒÒ, a protein of the immune system known to play an important role in causing joint destruction in people with rheumatoid arthritis.

The researchers looked at whether the green tea compound has the capability to block the activity of two potent molecules, IL-6 and cyclooxygenase-2 (COX-2), which also are actively involved in causing bone erosion in the joints of people with rheumatoid arthritis.

When untreated cells were stimulated with IL-1ƒÒ, a sequence of molecular events occurred that resulted in production of the bone-destructive molecules. But the scientists found that pre-incubation with EGCG was capable of inhibiting the production of these molecules. EGCG also inhibited the production of prostaglandin E2, a hormone-like substance that causes inflammation in the joints.

The cell signaling pathways that regulate levels of these immune system molecules under both normal and rheumatoid arthritis situations are well studied, and the researchers were able to trace the effects of the green tea compound infusion to see that it worked by inhibiting these pathways.

Ahmed says that these studies suggest that EGCG or molecules that could be derived synthetically from the EGCG found in green tea may be of therapeutic value by inhibiting the joint destruction in rheumatoid arthritis.

Previously, Ahmed and other researchers made another promising finding when EGCG-pretreated synovial fibroblasts were stimulated with the cytokine IL-1ƒÒ to study the protective effect of this green tea compound. Compared to untreated synovial fibroblasts, the cells treated with EGCG markedly blocked the ability of IL-1ƒÒ to produce the proteins and enzymes that infiltrate the joints of persons with rheumatoid arthritis and cause cartilage degradation.

The laboratory now is focused on the inhibitory role of EGCG in gene expression. The scientists plan to test EGCG in animal models of rheumatoid arthritis to see if it provides similar therapeutic or preventive effects. Ahmed believes that the outcome of these studies will form a strong foundation for future testing of green tea compound in humans with rheumatoid arthritis.

###
In addition to Ahmed, authors of the study are Angela Pakozdi, M.D., a former research fellow in the Division of Rheumatology at the U-M Health System; and Alisa E. Koch, M.D., the Frederick G.L. Huetwell and William D. Robinson, M.D. Professor of Rheumatology at the U-M Health System and a researcher at the Veterans Affairs Ann Arbor Healthcare System.

This research was supported by National Institutes of Health grants and Veteran Administration Medical Research Service funds to Koch.

Meeting: Experimental Biology 2007, American Society for Nutrition Abstract 1652.

FMS Global News

Tenderpoints

Advertisements

About FMS Global News

Folllowing Rick Usher's death in December 2008, at his request in September of that year, I had agreed, as his principal contributor and an experienced journalist, to run the FMS Global News service due to his heavy commitments to music and raising research funds through this avenue. Following his sad and sudden death I hope to continue his work as he would have wished.
This entry was posted in Arthritis, Autoimmune Diseases, Britain, Clinical, Diseases, Europe, Feeds, Fibrohugs, Fibrohugs News, Fibromyalgia News, Fibromyalgia News Deutschland, Fibromyalgia News France, Fibromyalgia News Israel, Fibromyalgia News Jerusalem, Fibromyalia News Germany, FMS Global News, Global News, Health, Medical, Medical Journals, Medical Research, Medical University, News, News Australia, News Canada, News France, News India, News Ireland, News Israel, News Jerusalem, News Montreal, News Norway, News Quebec, News Saskatchewan, News Scotland, News Spain, News Sweden, News UK, Ontario, Osteoarthritis, Ottawa, Pain, Research, Rheumatism, Rheumatoid Arthritis, RSS, Stockholm, Swedish, Tenderpoints, Toronto, Universities, University of Michigan, US, World, World News. Bookmark the permalink.

4 Responses to Green tea compound may be a therapy for people with rheumatoid arthritis

  1. Green tea compound suppresses factors causing cartilage, bone destruction in arthritis

    Contact: Sylvia Wrobel
    ebpress@bellsouth.net
    770-270-0989
    Federation of American Societies for Experimental Biology

    In rheumatoid arthritis, a person’s own immune system attacks the joints by activating the synovial tissue that lines the body’s movable joints, causing inflammation, swelling, pain and eventually erosion of the bone and cartilage and deformation of the joint. It is among the most debilitating forms of arthritis, often making difficult even the simplest of daily activities.

    In a study presented April 29 at Experimental Biology 2007, University of Michigan Medical School scientist Dr. Salah-uddin Ahmed reports that a compound derived from green tea was able to inhibit production of several immune system molecules involved in inflammation and joint damage. The compound, named epigallocatechin-3-gallate (EGCG), an active principal of green tea extract, is a potent anti-inflammatory molecule, and also was able to inhibit production of interleukin-6 (IL-6) and prostaglandin E2, the inflammatory products found in the connective tissue of people with rheumatoid arthritis.

    Dr. Ahmed’s Experimental Biology presentation was part of the scientific program of the American Society for Nutrition.

    Synovial fibroblasts (cells that form a lining of synovial tissue surrounding the capsule of the joints) were isolated from the joints of the patients suffering from rheumatoid arthritis, cultured in growth medium, and incubated with EGCG. Synovial fibroblasts were then stimulated with pro-inflammatory cytokine IL-1ß, a protein of the immune system known to play an important role in causing joint destruction in rheumatoid arthritis.

    In an earlier study published by Dr. Ahmed’s research group last fall, the researchers showed some interesting and novel findings when EGCG pretreated synovial fibroblasts were stimulated with the cytokine IL-1ß to study the protective effect of this green tea compound. Compared to untreated synovial fibroblasts, the cells treated with EGCG markedly blocked IL-1ß’s ability to produce the proteins and enzymes that infiltrate the joints of persons with rheumatoid arthritis causing cartilage degradation.

    The scientists decided to extend their study to see if the green tea compound also has the capability to block the activity of two other potent molecules, IL-6 and cyclooxygenase-2 (COX-2), actively involved in causing bone erosion in the RA joint. In the new study presented at Experimental Biology, the scientists once again isolated synovial fibroblasts taken from the joints of patients suffering from rheumatoid arthritis and incubated these cells with the green tea compound. When untreated cells were stimulated with IL-1ß, a sequence of molecular events occurred that resulted in production of the bone-destructive molecules. But the scientists found that pre-incubation with EGCG was capable of blocking the production of these molecules in a dose-dependent manner. Furthermore, EGCG also inhibited the production of prostaglandin E2, which causes inflammation in the joints.

    The cell signaling pathways that regulate levels of these immune system molecules under both normal and rheumatoid arthritis situations is well established, and the researchers were able to trace the effects of the green tea compound infusion to see that it worked by inhibiting these pathways.

    Dr. Ahmed says that these studies suggest that EGCG or molecules that could be derived synthetically from the EGCG found in green tea may be of therapeutic value in inhibiting the joint destruction in this challenging disease. The laboratory now is focused on the inhibitory role of EGCG in gene expression. The scientists plan to give EGCG orally to mice genetically bred to be animal models of rheumatoid arthritis to see if it provides similar therapeutic or preventive effects. Dr. Ahmed believes these studies will form a strong foundation for future testing of green tea compounds in humans with rheumatoid arthritis.

    ###
    Co-authors of the study are Dr. Angela Pakozdi and Dr. Alisa Koch of the University of Michigan and the Veterans Affairs Medical Center in Ann Arbor.

    This research was supported by NIH grants and Veteran Administration Medical Research Service funds to Dr. Alisa Koch.

    FMS Global News

  2. lisahicks says:

    I read something bad about green tea few days back. Today i read something good. I guess it won’t affect me having my teacuppa.com green tea every morning.

  3. Pingback: PressPosts / User / ThePassion / Submitted

  4. Pingback: Fred

Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s